1,253 research outputs found

    Evidence for Carrier-Induced High-Tc Ferromagnetism in Mn-doped GaN film

    Get PDF
    A GaN film doped with 8.2 % Mn was grown by the molecular-beam-epitaxy technique. Magnetization measurements show that this highly Mn-doped GaN film exhibits ferromagnetism above room temperature. It is also revealed that the high-temperature ferromagnetic state is significantly suppressed below 10 K, accompanied by an increase of the electrical resistivity with decreasing temperature. This observation clearly demonstrates a close relation between the ferromagnetism with extremely high-Tc and the carrier transport in the Mn-doped GaN film.Comment: 9 pages, 3 figure

    Simplified solution to determination of a binary orbit

    Full text link
    We present a simplified solution to orbit determination of a binary system from astrometric observations. An exact solution was found by Asada, Akasaka and Kasai by assuming no observational errors. We extend the solution considering observational data. The generalized solution is expressed in terms of elementary functions, and therefore requires neither iterative nor numerical methods.Comment: 15 pages; text improved, Accepted for publication in the Astronomical Journa

    Highly reflective distributed Bragg reflectors using a deeply etched semiconductor/air grating for InGaN/GaN laser diodes

    Get PDF
    2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    The effect of repetitive baseball pitching on medial elbow joint space gapping associated with 2 elbow valgus stressors in high school baseball players

    Get PDF
    Background: To prevent elbow injury in baseball players, various methods have been used to measure medial elbow joint stability with valgus stress. However, no studies have investigated higher levels of elbow valgus stress. This study investigated medial elbow joint space gapping measured ultrasonically resulting from a 30 N valgus stress vs. gravitational valgus stress after a repetitive throwing task. Methods: The study included 25 high school baseball players. Each subject pitched 100 times. The ulnohumeral joint space was measured ultrasonographically, before pitching and after each successive block of 20 pitches, with gravity stress or 30 N valgus stress. Two-way repeated measures analysis of variance and Pearson correlation coefficient analysis were used. Results: The 30 N valgus stress produced significantly greater ulnohumeral joint space gapping than gravity stress before pitching and at each successive 20-pitch block (P < .01). For the 2 stress methods, ulnohumeral joint space gapping increased significantly from baseline after 60 pitches (P < .01). Strong significant correlations were found between the 2 methods for measurement of medial elbow joint space gapping (r = 0.727-0.859, P < .01). Conclusions: Gravity stress and 30 N valgus stress may produce different effects with respect to medial elbow joint space gapping before pitching; however, 30 N valgus stress appears to induce greater mechanical stress, which may be preferable when assessing joint instability but also has the potential to be more aggressive. The present results may indicate that constraining factors to medial elbow joint valgus stress matched typical viscoelastic properties of cyclic creep

    The decomposition of level-1 irreducible highest weight modules with respect to the level-0 actions of the quantum affine algebra Uq(sl^n)U'_q(\hat{sl}_n)

    Full text link
    We decompose the level-1 irreducible highest weight modules of the quantum affine algebra Uq(sl^n)U_q(\hat{sl}_n) with respect to the level-0 Uq(sl^n)U'_q (\hat{sl}_n)--action defined in q-alg/9702024. The decomposition is parameterized by the skew Young diagrams of the border strip type.Comment: 22 pages, AMSLaTe

    Does trampoline or hard surface jumping influence lower extremity alignment?

    Get PDF
    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [ Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations
    corecore